CS MARINE LLC

View Original

LCS: Concept & Needs

LCS: Concept & Needs

LCS-I missions
(click to view full)

Ultimately, the US Navy is trying to replace 56 vessels: 30 FFG-7 Oliver Hazard Perry Class  frigates, 14 MCM Avenger Class  mine countermeasures vessels, and 12 MHC-51 Osprey Class  coastal mine hunters.

The LCS requirement has been identified as part of a broader surface combatant force transformation strategy, which recognizes that many future threats are spawning in regions with shallow seas, where the ability to operate near-shore and even in rivers will be vital for mission success.

That requires the ability to counter growing “asymmetric” threats like coastal mines, quiet diesel submarines, global piracy, and terrorists on small fast attack boats. It also requires intelligence gathering and scouting, some ground combat support capabilities, and the ability to act as a local command node, sharing tactical information with other Navy aircraft, ships, submarines, and joint units.

At the same time, however, the US Navy needs ships that can act as low-end fillers in other traditional fleet roles, and operate in the presence of missile-armed enemy vessels and/or aerial threats.

Given the diversity of possible missions in the shallow-water and near-shore littoral zones, and the potential threats from forces on land, any ship designed for these tasks must be both versatile and stealthy. History also suggests that they need to be able to take a punch. Meanwhile, the reality of ships that are expected to remain in service for over 30 years gives rise to a need for electronic longevity. As the saga of the USA’s cost-effective but short-lived FFG-7 frigates proved, “future-proofing” and upgradeability for key systems, electronics, and weapons will be critical if these small surface combatants are to remain useful throughout their mechanical lives.

While a ship’s hull and design makes a number of its performance parameters difficult to change, the Americans believed they may have a solution that lets them upgrade sensors and key systems. Denmark’s Standard Flex 300 corvettes  pioneered a revolutionary approach of swappable mission modules, based on ISO containers. In contrast to the traditional approach, which is to cram a wide-ranging set of bolted-in compromise equipment into fixed installations, “flex ships” can radically changes the ships’ capabilities, by swapping in a full breadth of equipment focused on a particular need.

Swappable modules also give the Navy new options over time. One option is technology-based, via spiral development that focuses on rapid insertions of new equipment. This creates a long series of slight improvements in the mission modules, and hence the ship’s capabilities. Over time, the cumulative effect can be very significant. The 2nd benefit is cost-related, since upgrades require far less work and cost to install when mission technologies evolve. The 3rd benefit is risk-related. The ability to do low-cost, spiral upgrades encourages frequent “refreshes” that remain within the existing state of the art, rather than periodic upgrade programs that must stretch what’s possible, in order to handle expected developments over the next 25 years.